Atualmente, vivenciamos os avanços tecnológicos presentes nas indústrias, impactando diretamente nos processos de construção, desenvolvimento e entrega de produtos ao consumidor. A competitividade de mercado está se centrando cada vez mais nos pilares tecnológicos e digitais, tornando assim a automatização e digitalização dos processos mais recorrentes nas empresas. O impacto gerado pela indústria 4.0 criou um horizonte de oportunidades para o mercado de varejo sair na frente e competir em maiores níveis com concorrentes, buscando maiores classificações em relação à entrega, qualidade, eficiência e eficácia nos processos até a chegada do produto ao consumidor.

IA no varejo

Além disso, os avanços em Inteligência Artificial, Machine Learning e IoT (Internet of Things) proporcionam novos horizontes para os diversos ramos dentro da indústria do varejo. A automatização dos processos de estocagem, monitoramento de rotas, estratégias de armazenamentos de materiais, previsão de demanda e satisfação dos clientes são exemplos de procedimentos adotados por meio dessas tecnologias para se obter melhores resultados no mercado.

Estamos vivenciando a era dos dados. Estar preparado para ela, orientando os processos internos aos dados, possibilitará às empresas imergirem neste oceano de oportunidades, resultando assim na redução de custos a partir de análises de perdas e desperdícios, e em mais sustentabilidade, competitividade e aprovação no mercado. 

Supply chain e S&OP

Dentre as diferentes áreas operacionais da indústria, a inteligência artificial se destaca fortemente na cadeia de suprimentos, promovendo mais automatizações nos processos de produção. Traçando um caminho procedural das operações junto à IA, percebe-se que o ciclo abrange desde a implementação de tecnologias inteligentes nos processos de vendas e operações (S&OP), intensificando assim as análises para melhores estratégias de venda com auxílio da área de marketing, até melhores formatos para operar e a automatização de trabalhos exaustivos e repetitivos.

Por meio do avanço da Internet das Coisas, torna-se mais eficiente a captação dos dados de diferentes etapas da produção. A obtenção de dados desde a primeira tarefa até a entrega ao consumidor final já não é mais um problema, com possibilidade de extrair dados de produção, por exemplo, robôs implementados para armazenamento, aplicativos para os motoristas, produtos conectados à internet, entre diversas formas de coletar dados com IoT. Outro ponto importante é a ponte entre os interessados através de análises de dados avançadas com Machine Learning e IA, visando filtrar os fornecedores de matérias primas e os fornecedores finais que estejam mais alinhados com os interesses da empresa e também de obter uma menor perda nos processos de obtenção de materiais e entrega ao consumidor.

As tecnologias de IA, ML e IoT também influenciam a geração de receitas, exponenciando os lucros e melhores resultados junto ao gerenciamento de relações com os clientes e fornecedores. Um exemplo disso é a precificação dinâmica inteligente, que utiliza a inteligência artificial e adota estratégias baseadas no mercado e nos consumidores para determinar o melhor preço (não necessariamente o maior, mas o preço mais adequado para competir no mercado), visando ao aumento da receita. 

Demand Forecasting 

Em relação aos processos de previsão de demanda, a efetivação de IA e ML produzem uma assertividade de cerca de 90%, gerando impacto e melhorias nas previsões de demandas baseadas em análises avançadas de diferentes dados, como: condição climática, situação econômica do mercado, quantidades disponíveis, desejo do consumidor e previsibilidade de consumo. Além disso, as análises avançadas e modelos inteligentes que possuem um aprendizado contínuo por meio de maiores coletas de dados e tempo proporcionam ações preditivas em tempo real, auxiliando as decisões de forma assistida pelos profissionais. Isso diminui as falhas e riscos nas operações com tomadas de decisões, podendo alterá-las em caso de predições negativas e que possam gerar diversos impactos.

Ademais, na área de laticínios e produtos perecíveis, a IA possui grande força, visto que as estratégias para mercadorias com datas curtas e logística mais frágil precisam ser muito mais aguçadas. Essa contribuição é sustentada mediante a coleta de dados, de informações e da criação de modelos preditivos de demanda que entreguem melhores estratégias para armazenamento dos produtos, definição das melhores rotas, diminuição no desperdício de combustível e previsão de geolocalização nos casos dos produtos de maior demanda para não mantê-los em estoques distantes, facilitando assim a preservação dos produtos até a sua entrega final.

Big Data

Esse é um termo que vem ganhando grande proporção e espaço no contexto da indústria 4.0, representando a grande massa de dados, coleta intensiva e importância da inteligência artificial e aprendizado de máquina para tratar essas informações que podem agregar muito valor às empresas. Representado pelos milhares de dados produzidos pelas diferentes etapas e vivências do mercado, o big data inclui dados de compra, navegações online dos consumidores, dados de mídia e marketing, satisfação dos clientes com o serviço e/ou produto, entre outras diversas informações.

O processo de coleta e armazenamento de dados é complexo e analisar milhares de dados se torna uma tarefa humana impossível. Assim, a IA e modelos inteligentes baseados em aprendizado de máquina caminham juntos com o big data para integrar os dados externos de mercado e internos da empresa de forma que torne possível uma previsão e planejamento de demanda, maiores receitas, lucro, diminuição de desperdícios e sustentabilidade.

Logística 4.0 

É notório os avanços que a indústria 4.0 vem alocando. Por exemplo: diversas automatizações nos processos de produção, digitalização de produtos para testes de melhorias, rapidez na informação e implementação de resultados.

Com a indústria 4.0 vem a logística 4.0, direcionada para a otimização nos processos de embarque e desembarque das mercadorias. Automatizações e uso de IA em diversas etapas da logística, como a organização dos produtos nos armazéns feitas por robôs que, por meio de IA, organizam de forma estratégica e hierárquica os produtos para facilitar e aumentar a velocidade de operações de carga. 

Além disso, é possível gerar previsões de acontecimentos em rodovias, como obras que interrompem os trajetos, fazendo o uso de IA e análise dos dados em tempo real. Isso permite a adoção de uma melhor rota em tempo presente, sem se basear no passado histórico e desperdiçar recursos, resultando também na satisfação do cliente e rapidez na entrega. Aproveitamento de rotas, uso inadequado e desnecessário de veículos, maiores emissões de gases, altos custos com combustíveis e manutenção são problemas interrompidos pelas diretivas da logística 4.0, visando mais assertividade, inteligência, sustentabilidade, maior receita e satisfação do consumidor e fornecedor.

IA no varejo – Considerações finais

A implementação de IA e machine learning por meio de modelos inteligentes não é uma tarefa fácil e instantânea. Entretanto, o resultado de toda a preparação e construção dessas tecnologias direcionadas às especificidades do negócio resultarão em diversos benefícios. 

O poder da IA proporciona uma visão inteligente de mercado, previsão de demanda com maiores taxas de acerto, diminuição na perda de produtos por validade ou saturação de armazéns e precisão nos ajustes de preços sustentados mediante diferentes variáveis que podem influenciar na variação de receita. Além disso, por meio de análises avançadas de dados é possível filtrar os fornecedores buscando os que entregam mais resultados e estão mais alinhados com os valores da empresa. 

Esses pontos positivos vão ao encontro do uso de IA para obter melhores resultados sustentáveis, visando ao aproveitamento de rotas, entrega contínua e análise de melhores rotas, redução nos custos e emissão de gases.

O acesso gerado pelas análises avançadas e IA de toda a cadeia de suprimentos e operações da empresa resulta em grande previsibilidade de riscos ou falhas nas etapas iniciais, de preparação e entrega ao cliente final. Esse poder de previsibilidade e estratégias inteligentes consolida a ideia de gerenciamento de riscos em tempo real, diminuição drástica de falhas e desperdícios, controle unificado das etapas de vendas, operações, produção e entrega das mercadorias. Enfim, empresas mais inteligentes e sustentáveis nunca estiveram tão perto de serem consolidadas. O caminho a seguir só depende de preparação e organização para uma maior inteligência e previsibilidade.

Gostou do artigo sobre as aplicações de IA no varejo? Então deixe o seu comentário.

Quem é a Aquarela Analytics?

A Aquarela Analytics é pioneira e referência nacional na aplicação de Inteligência Artificial na indústria e em grandes empresas. Por meio da plataforma Vortx e da metodolgia DCIM (Download e-book gratuito), atende clientes importantes, como: Embraer (aeroespacial), Scania e Grupo Randon (automotivo), SolarBR Coca-Cola (alimentício), Hospital das Clínicas (saúde), NTS-Brasil (óleo e gás), Votorantim (energia), dentre outros. Fique atento às novas publicações diárias da Aquarela Analytics no Linkedin e assinando a nossa Newsletter mensal! 

Autor

Share via
Send this to a friend