A indústria 4.0 é caracterizada pela migração do fluxo de valor em um movimento que sai dos recursos físicos concebidos e produzidos de forma centralizada, para os serviços concebidos e produzidos de forma descentralizada e cada vez mais personalizados pelo forte apoio de Advanced Analytics e IA, a partir de um processo de transformação digital.
Esse processo tem seu início com o boom da internet na primeira década do milênio. A emancipação da Indústria 4.0, que atingiu a sua maioridade em 2018, deixa de existir apenas em artigos científicos e laboratórios e toma força e vigor nos orçamentos das maiores corporações do mundo, conforme estabelecem as pesquisas da OCDE, Gartner Group e PWC.
A indústria 4.0 é materializada a partir dos conceitos da Web 3.0, cujo cerne está na democratização da capacidade de ação e de conhecimento (como já discutido neste post em nosso blog ). Mas antes de chegarmos no 4.0, vamos entender as suas versões anteriores em perspectiva:
Caracterizada pela descoberta dos ganhos econômicos ao produzir algo em série ao invés de produção artesanal (individual), possibilitando a mecanização do trabalho, que anteriormente só era executado por pessoas ou animais, foi o momento em que o homem começou a usar a força das águas, dos ventos e também do fogo, a partir das máquinas a vapor e moinhos.
Essa visão foi estabelecida por Adam Smith em 1776 no livro – A riqueza das Nações – onde ele apresenta as vantagens da segmentação do trabalho em uma fábrica de alfinetes. (saiba mais)
Componentes fundamentais – Carvão e Máquinas a vapor.
Seu grande impulsionador foi a eletricidade que, a partir de geradores, motores e iluminação artificial, permitiu estabelecer as linhas de montagem, e assim se deu a produção em massa de bens de consumo.
Componentes Fundamentais – Eletricidade e Máquinas eletromecânicas
Caracterizada pela automação, tem como impulsionador o uso de robôs e computadores na otimização das linhas de produção.
Componentes Fundamentais: Computadores e Robôs
Indústria 4.0
A Indústria 4.0 é caracterizada pela forte automação das etapas de concepção, manufatura e distribuição de bens e serviços com forte uso de IC – Inteligência Coletiva – e IA – Inteligência Artificial. Na Indústria 4.0, com a evolução da Web, indivíduos são cada vez mais empoderados pelos seus agentes (smartphones). Dar vazão às necessidades desse novo consumidor é um dos grandes desafios da nova indústria.
Para ilustrar esse conceito criamos a seguinte tabela:
Gerações
Concepção (Design)
Manufatura
Distribuição
Serviços
Virtude
Era pré-industrial
Pessoas
Pessoas
Pessoas
Pessoas
Trabalho artesanal
Indústria 1.0
Pessoas
Máquinas
Pessoas
Pessoas
Uso de energia hidráulica, térmica (vapor) e eólica
Indústria 2.0
Pessoas
Máquinas
Pessoas
Pessoas
Uso de eletricidade e estabelecimento das linhas de montagem
Indústria 3.0
Pessoas usando máquinas (computadores) como assistentes
Máquinas
Pessoas e Máquinas
Pessoas
Uso de autômatos (robôs e computadores)
Indústria 4.0
Inteligência Coletiva + Máquinas
Máquinas
Máquinas
Inteligência Coletiva + Máquinas
Uso de inteligência coletiva e computacional na etapa de concepção de produtos e serviços
Quadro 1 – As gerações da indústria – Aquarela Advanced Analytics 2018
Para compreender a Indústria 4.0 é importante esclarecer alguns conceitos que compõem seus alicerces: a IA – Inteligência Artificial e a IC – Inteligência Coletiva.
Inteligência Coletiva
Vamos começar pela IC, que é mais tangível, uma vez que usamos constantemente mecanismos que se valem da inteligência coletiva na produção e curadoria de conteúdos como: wikipedia, Facebook, Waze e Youtube.
Wikipedia: Por exemplo, a maior parte do conteúdo na Wikipedia é produzido por centenas de milhares de editores mundo afora e curado por milhões de usuários que validam e revisam seu conteúdo.
Waze: O aplicativo Waze usa o movimento dos próprios usuários para construir e aperfeiçoar seus mapas, fornecendo em tempo real caminhos alternativos para fugir de congestionamentos e novas rotas de novos trechos criados pelas cidades.
Facebook: O Facebook e Youtube são serviços que hoje detêm uma gama diversa de conteúdo que é gerado e curado espontaneamente pelos seus usuários por meio de likes e compartilhamentos.
O que esses mecanismos têm em comum? Eles se fiam da chamada inteligência das massas, um conceito estabelecido pelo Marquês de Condorcet em 1785, que define um grau de certeza e incerteza sobre uma decisão a partir de um coletivo de indivíduos.
Com centenas ou milhares de indivíduos agindo ao seu modo, ao somar todas essas ações, obtém-se um todo que é maior que a soma das partes. Esse comportamento coletivo é observado nos chamados efeitos de enxame, em que insetos, pássaros, peixes e seres humanos, agindo de forma coletiva, alcançam feitos muito maiores que se agissem de forma individual.
Condorcet mostrou isso de forma matemática, o que inspirou muitos líderes iluministas que usaram suas ideias como base para a formação das democracias nos séculos 18 e 19.
De forma contemporânea, podemos olhar um banco de dados como um grande lago de experiências individuais que formam um coletivo, o Big Data é responsável por coletar e organizar esses dados e o Advanced Analytics por aprimorar, criar e recriar coisas (disrupção) com o uso intensivo de estatística e IA.
Inteligência Artificial
Em um escrutínio criterioso, é possível entender a IA como uma implementação artificial de agentes que usam os mesmos princípios da IC – Inteligência Coletiva. Ou seja, ao invés de formigas ou abelhas, são usados neurônios e/ou insetos artificiais, que de certa forma simulam os mesmos comportamentos do mundo real em um mundo computacional (nuvem) e, dessa forma, obtém a partir da inteligência das massas: decisões, respostas e criações, como esta peça usada para sustentar uma ponte na capital da Holanda, Haia.
Do lado esquerdo a peça original criada por engenheiros, no meio e à direita duas peças criadas a partir de uma abordagem de IA chamada de algoritmos genéticos. A peça da direita é 50% menor e usa 75% menos material e, apesar disso, por conta de seu design, é capaz de sustentar a mesma carga dinâmica da peça da esquerda.
Há centenas de casos de uso de IA, que vão desde a detecção de sorriso em máquinas fotográficas e celulares a carros que se locomovem de forma autônoma em meio a carros com motoristas humanos em grandes cidades.
Cada caso de uso de IA usa um conjunto de técnicas que podem envolver aprendizado (Machine Learning), descobertas de insights e geração de decisões ótimas por meio de predição e prescrição (Advanced Analytics) e ainda computação criativa (Creative Computing).
Exemplos
O uso intensivo de IC e IA podem gerar novos produtos e serviços gerando disrupções que hoje vemos em algumas indústrias promovidas por empresas como Uber, Tesla, Netflix e Embraer.
Uber
No caso do Uber, eles usam fortemente a IC para gerar competição e ao mesmo tempo colaboração entre motoristas e passageiros, o que é complementada por algoritmos de IA na entrega de um serviço de transporte confiável a um custo nunca antes disponível.
Apesar de ser 100% digital, está revolucionando a forma como nos transportamos e muito em breve lançará seus táxis 100% autônomos e, em um futuro próximo, drones que transportam seus passageiros pelos ares. Este é um exemplo claro de transformação digital a partir do redesenho por meio da perspectiva da Indústria 4.0.
Tesla
A Tesla usa IC a partir dos dados capturados dos motoristas de seus carros elétricos e, aplicando Advanced Analytics, optimiza seu próprio processo e ainda os usa para treinar a IA que hoje é capaz de dirigir um carro com segurança em meio ao trânsito de grandes cidades do mundo.
Eles são um exemplo material da Indústria 4.0. Usam IC e IA para desenhar seus produtos inovadores, uma cadeia de fábricas automatizadas para produzí-los e os vendem online. E muito em breve transportarão e entregarão seus produtos até a porta de seus clientes com seus novos caminhões elétricos e autônomos, fechando completamente o ciclo da Indústria 4.0.
Netflix
A Netflix, por sua vez, usa o histórico de acessos aos filmes e notas auferidas pelos seus usuários para gerar um lista de recomendações de preferências que servem de entrada para a criação de originais da própria empresa como os sucessos House of Cards e Stranger Things. Além disso eles usam a IA do algoritmo Bandit (da própria Netflix) para gerar capas de títulos e curadoria de lista, que atraiam os usuários (espectadores) a consumir novos conteúdos.
Embraer
A Embraer, 3ª maior fabricante de aviões do mundo e maior empresa de inovação no país usa IA, IC e Advanced Analytics em sistemas de manutenção de equipamentos.
Com o uso dessas técnicas é possível, a partir das experiências de manutenções e procedimentos de mitigação de riscos aplicados a uma IA, conseguir reduzir os custos de processos de troubleshooting em equipamentos de alto valor, chegando a uma economia de até 18% em uma indústria onde margens aparentemente baixas podem gerar impacto competitivo considerável.
Conclusões e recomendações
O caminho para a indústria 4.0 está sendo pavimentado pelas técnicas de IC, IA, Advanced Analytics, Big Data, Transformação Digital e Service Design e com bons exemplos de líderes globais.
A mudança é muitas vezes um processo que pode gerar ansiedade e desconforto, mas ela é necessária para alcançar as virtudes da Indústria 4.0.
Com relação às nações, a entrada tardia nos movimentos industriais pode gerar grandes dificuldades de competição. Por exemplo, no Brasil, a industrialização só foi possível pela força econômica do café centralizada no vale do Paraíba, e de certa forma foi tardia.
Qual a força e região do país que impulsionará a indústria 4.0? Acreditamos que regiões com alto IDH, alta conectividade e apoio ao trabalho em rede na forma de ecossistemas sairão na frente nessa nova corrida industrial.
Sugerimos começar pequeno e pensando grande, inicie pensando em Dados, eles são os blocos construtivos de toda a Transformação Digital. Comece alimentando uma Cultura de Dados em sua empresa/departamento/setor.
E como começar a pensar em Dados? Comece definindo seus dicionários, eles serão suas cartas náuticas em meio à jornada da Transformação Digital.
Entender o potencial dos dados e os novos negócios que eles podem gerar é instrumental para a transição de: produtor de bens físicos para: fornecedores de serviços que podem ser apoiados por produtos físicos ou não. Vide Uber e AirBnb, ambos não possuem carros ou imóveis, mas são os responsáveis por uma fatia generosa do mercado de transporte e acomodação.
Na Aquarela desenvolvemos um Business Analytics Canvas Model que trata-se de uma ferramenta de Service Design para a elaboração de novos negócios baseados em Dados. Com ele é possível promover o uso intensivo de IC, IA nas etapas de Concepção e Serviços, os elos que caracterizam a mudança da Indústria 3.0 para a 4.0.
Em breve publicaremos mais sobre sobre o Business Analytics Canvas Model e as técnicas de Service Design voltadas para Advanced Analytics e IA.
Fundador da Aquarela, CEO e arquiteto da plataforma VORTX. Mestre em Engenharia e Gestão do Conhecimento, entusiasta de novas tecnologias, tendo expertise em linguagem funcional Scala e em algoritmos de Machine Learning e IA.
Fundador e Diretor Comercial da Aquarela, Mestre em Business Information Technology com especialização em logística – Universiteit Twente – Holanda. Escritor e palestrante na área de Ciência e Governança de Dados para indústria e serviços 4.0.
Saudações a todos! O conceito Web 3.0 e seu stack tecnológico (tecnologias envolvidas) são importantes e aqui explicamos o porquê.
A cada dia o volume de dados e informações na internet cresce exponencialmente. Novos sites, imagens, vídeos e outras mídias são postadas a cada segundo. Assim, com esse volume de dados, como tornar as buscas por informação relevante com um custo benefício aceitável para atividades diárias? Portanto:
Em um contexto complexo de informações intensivas em constante mudança, as ferramentas da Web 3.0 são valiosas para usuários na organização de informações e processos de negócios em grande escala.
A evolução da Web
Desde o surgimento da primeira versão da Web, criada no início da década de 90 por Tim Berners-Lee na Suíça, suas tecnologias sofreram significativas evoluções, principalmente na interatividade com o usuário e na massificação da utilização da rede.
Em resumo, de acordo com nossas pesquisas, a história da web se deu em três fases importantes:
A Web Statica – Web 1.0
A Web 1.0 apresentava dados e informações de forma predominantemente estáticas, era caracterizada pela baixa interação do usuário, permitindo pouca ou nenhuma interação.
As tecnologias e métodos da Web 1.0 ainda são utilizadas para a exibição de conteúdos como leis, informativos e manuais. Assim, essa geração da Web foi marcada pela produção centralizada de conteúdos como os portais, UOL, ZAZ, Terra, AOL e os diretórios, Yahoo, Cadê e Craigslist.
Nestes portais e diretórios, o usuário é apenas o consumidor de conteúdos em um contexto onde poucos produzem para muitos. Isto é, um modelo muito próximo de broadcasting (TVs, rádios, jornais e revistas).
A grande virtude da Web 01 é a democratização do acesso à informação.
A Web Interativa – Web 2.0
A Web 2.0 em contraste à Web 1.0, tem seu conteúdo gerado predominantemente por seus usuários em um processo onde: muitos produzem e muitos consomem.
Um exemplo, talvez um dos principais, desse modelo é a plataforma Wikipédia. Da mesma forma, também se beneficiaram deste conceito foram os blogs, as redes sociais e o conhecido Youtube.
Na Web 2.0 o usuário deixa de ser apenas consumidor e se torna um produtor, ou coprodutor de conteúdos.
A grande virtude da Web 2.0 está na democratização da produção de conteúdo.
A Web da interação inteligente – Web 3.0
A Web 3.0 ou Web Semântica reúne as virtudes da Web 1.0 e 2.0 adicionando a inteligência das máquinas.
Em 2001 Tim-Berners Lee, o criador da Web, apresenta um artigo na revista Scientific American estabelecendo os pilares para a Web Semântica.
No texto, Berners-Lee explica como dois irmãos combinam a logística do tratamento médico que a mãe deles precisava fazer.
Na estória de Berners, os irmãos usando agentes inteligentes fazem todo o planejamento do tratamento, incluindo a marcação das consultas e a escala de caronas que os dois deveriam revezar, os agentes interagem com os sistemas das clínicas, entre si e com os dispositivos da casa.
Na Web 3.0, as máquinas se unem aos usuários na produção de conteúdo e na tomada de ações, tornando a infraestrutura da internet, de coadjuvante para protagonista na geração de conteúdos e processos.
Assim, os serviços da Web 3.0, unem-se aos usuários e aos produtores profissionais na criação ativa de conhecimento. Dessa forma, com sua grande capacidade de processamento, a Web 3.0 é capaz de trazer para as pessoas e para as empresas, serviços e produtos com alto valor agregado por conta da sua assertividade e alta personalização,
A grande virtude da Web 3.0 é a democratização da capacidade de ação e conhecimento, que antes só estava acessível às empresas e aos governos.
Resumo comparativo das Webs
Resumo da análise da evolução da Web
Exemplos Web 3.0
Alguns exemplos de aplicações da Web 3.0 são o Wolfram Alfa e na Siri da Apple: estes dois aplicativos conseguem resumir grandes quantidades de informações em conhecimento e ações úteis para as pessoas.
Wolfram Alpha
Para entender melhor a diferença entre a Web 2.0 e a 3.0, podemos fazer um pequeno comparativo entre o Wolfram Alfa e o Google, usando as duas ferramentas, digitando a frase “Brasil vs Argentina” em ambos buscadores, vemos a diferença nos resultados, veja na figura abaixo:
Comparativos dos resultados das ferramentas de busca
Comparativo Google e Wofram Alpha como exemplo de aplicação Web 3.0
Primeiramente, no caso do Google, os resultados são voltados aos conteúdos mais frequentes, enfatizando os jogos entre Brasil e Argentina. Nota-se que a palavra “futebol” ou “jogos” não foram mencionadas na busca.
Por outro lado, no resultado do Wolfram Alpha, a ferramenta entende que a busca se trata de uma comparação entre os dois países. Consequentemente retorna dados estatísticos, históricos, geográficos (mapas), demográficos, linguísticos entre outros aspectos úteis de comparação.
Siri Apple
A Siri da Apple, por sua vez, usa técnicas de reconhecimento de voz e inteligência artificial para trazer resultados e efetuar ações, como por exemplo:
“onde fica a pizzaria mais próxima?”, “estou a quantos quilômetros do próximo posto de gasolina” ou ainda “marque uma reunião para às 15h00 amanhã”.
Na Web 1.0 e 2.0 a busca é espécie de pesquisa “cara-crachá” do texto em relação ao que existe publicado na rede, muitas vezes com o viés do que é mais abundante, não trazendo o que é mais relevante para o usuário naquele momento.
Uma das distinções dos buscadores da Web 3.0, com relação aos da Web 1.0 e 2.0, está no tempo que usuário pode gastar navegando em um mar de informações até realmente encontrar o que ele realmente procurava.
Já os sistemas que operam nos padrões Web 3.0 buscam conhecimento contextualizado para auxiliar as pessoas em suas tarefas, apontando uma série de possibilidades de análise e informações relevantes.
Conclusões e recomendações
A Web 3.0 surge de maneira gradual, tal qual foi da versão 1.0 para a 2.0, se encaminhando para um ambiente mais dinâmico onde o conhecimento em ação pode acelerar exponencialmente negócios em processos de:
Lembrando que o conhecimento é a informação justificada e contextualizada capaz de mudar algo ou alguém, o que pode ser traduzido como capacidade de ação. Portanto, entendemos que:
a Web 3.0 começa a trazer conhecimento capaz de promover mudanças em larga escala para as pessoas, organizações promovendo a democratização da capacidade de ação e conhecimento em uma magnitude muito maior se comparada com o que foi alcançado com as Web 1.0 e 2.0.
Empresas como Apple e IBM vêm investindo pesado em tecnologias da Web 3.0, por exemplo, a Google Inc. na última década fez várias aquisições de empresas que trabalham com as tecnologias da Web Semântica, como por exemplo a Applied Semantics, e a Metaweb Technologies, Inc, entre outras.
Vale a pena aos inovadores, sejam eles empresários, políticos ou pesquisadores, entender mais sobre esse novo horizonte de possibilidades e estarem preparados para a nova geração de negócios.
Sem a visão das mudanças da Web 3.0 há um risco grande de empresas tradicionais tornarem obsoletas no momento da virada de paradigma, assim como aconteceu com gigantes do passado como Kodak, Nokia e Altavista, que em seus mercados, não se modernizaram em tempo.
Fundador da Aquarela, CEO e arquiteto da plataforma VORTX. Mestre em Engenharia e Gestão do Conhecimento, entusiasta de novas tecnologias, tendo expertise em linguagem funcional Scala e em algoritmos de Machine Learning e IA.
Fundador e Diretor Comercial da Aquarela, Mestre em Business Information Technology com especialização em logística – Universiteit Twente – Holanda. Escritor e palestrante na área de Ciência e Governança de Dados para indústria e serviços 4.0.
Neste artigo apresentamos uma breve visão sobre quatro conceitos fundamentais para a leitura dos próximos conteúdos deste blog. Trataremos aqui da noção de dados, informação, conhecimento e sabedoria, conceitos que estão associados a diferentes potenciais de inovação (capacidade de transformação da realidade). Ilustramos tal relação no gráfico a seguir:
Complexidade x Valor
Entendemos que o potencial de inovação é sustentado por duas forças, a complexidade e o valor, respectivamente dispostas no gráfico acima em suas coordenadas vertical e horizontal. Logo, quanto mais acima e à direita, maior o potencial de impacto inovador.
Além do plano formado pela complexidade e valor, representando as capacidades de transformação da realidade (potenciais de inovação), o gráfico também aponta os elementos relacionados com o universo humano e computacional dentro deste plano.
A seguir são apresentados os significados das cores dos elementos do gráfico.
Vermelho Ser humano com seus sentidos, práticas e vivências.
Laranja – Elementos potencializadores da inovação.
Verde – Fases de desenvolvimento do potencial de inovação até a tomada de decisão.
Azul claro – Ferramentas digitais e computadores que servem de apoio ao trabalho humano, entendidos aqui como próteses cognitivas, as quais nos ajudam a executar tarefas criativas em crescente complexidade.
O que são dados, informação, conhecimento e Sabedoria?
Para definirmos cada um dos elementos potencializadores da inovação (dado, informação, conhecimento e sabedoria), utilizaremos como metáfora o caso da leitura de um termômetro:
A metáfora do termômetro – O que são dados, informação, conhecimento e Sabedoria?
Olhando a figura, o que podemos inferir dela? O que é dado, informação e conhecimento? E quais possíveis conclusões podemos tirar a partir da leitura de um termômetro (intuição e sabedoria)?
No caso da leitura de um termômetro, temos a seguinte descrição quanto aos elementos potencializadores da inovação:
Dados – são os sinais não interpretados, o menor grão e a matéria prima da escala do conhecimento e base para qualquer atividade com potencial de inovação. Eles surgem a partir daquilo que vivenciamos (eventos da vida) e capturamos por meio dos nossos sentidos e pelos dispositivos eletrônicos. No exemplo, o número 36,2 é apenas um número. Dados poderiam também ser caracteres como “@”, “T”, “——-” e assim por diante.
Informação – é a listagem dos dados de maneira organizada dentro de uma escala, mostrando uma série de eventos (dados) agrupados. No termômetro a letra ”C” (Celsius) representa a escala, a qual poderia ser também representada por graus Fahrenheit, porém seriam valores diferentes. Nós, humanos, memorizamos de alguma forma os dados obtidos pelos sentidos (organizamos e classificamos em escala), ao passo que os sistemas computacionais, a memorização se dá por meio de dados em listas, planilhas, documentos e banco de dados, entre outros.
Conhecimento – é um tipo de informação contextualizada capaz de mudar algo ou alguém, sendo justificável de alguma maneira. Saber que a temperatura de 38 graus (dado) na escala Celsius (informação) indica que a pessoa está com febre (a temperatura média de uma pessoal saudável é de 36,4 graus) e assim, alguma ação deve ser tomada. Nós seres humanos podemos refletir sobre um problema e tomar uma decisão, já os sistemas computacionais, utilizam algoritmos para isso, ambos com base em dados e em informações. Um algoritmo, por exemplo, pode descobrir padrões de consumo de produtos em um supermercado ou ser usado para melhorar o trânsito de uma cidade.
Sabedoria – no topo da escala, a sabedoria se torna subjetiva e aparentemente irracional (ilógica) por ser um conjunto complexo de raciocínios que navegam rapidamente pelas três fases anteriores. Qual tratamento deve ser aplicado ao paciente com febre? Pessoas com grande vivência podem dar conselhos sábios. Nos sistemas computacionais utilizamos instrumentos capazes de conectar dados de diversas áreas para trazer respostas cada vez mais inteligentes (Web 3.0, também conhecida como Web Semântica).
Conclusões
Apresentamos uma visão resumida da Aquarela sobre dados, informação, conhecimento e sabedoria. Muito embora não haja um entendimento definitivo sobre o tema, sua apresentação e definição tornam-se necessárias. Em particular, os conhecimentos apresentados aqui são instrumentais para explicar como o caminho da Web 3.0 (a Web Semântica) e a Indústria 4.0 estão sendo pavimentadas pelo Data Analytics e pelos Linked e Open Data.
SANTOS, Marcos. Um modelo para a gestão colegiada orientada ao significado por meio da realização de PCDAs. Dissertação (Mestrado em Engenharia e Gestão do Conhecimento). Programa de Engenharia e Gestão do Conhecimento, Universidade Federal de Santa Catarina (UFSC), Florianópolis, 2003.
GETTIER, E. L. Is justified true belief knowledge? Analysis, [S.l.], v. 23, n. 6, p. 121–123, 1963.
DRUCKER, P. F. The new realities. New Brunswick, NJ: Transaction Publishers, 2003.
Fundador da Aquarela, CEO e arquiteto da plataforma VORTX. Mestre em Engenharia e Gestão do Conhecimento, entusiasta de novas tecnologias, tendo expertise em linguagem funcional Scala e em algoritmos de Machine Learning e IA.
Fundador e Diretor Comercial da Aquarela, Mestre em Business Information Technology com especialização em logística – Universiteit Twente – Holanda. Escritor e palestrante na área de Ciência e Governança de Dados para indústria e serviços 4.0.
Como primeiro post em nosso Blog, gostaria de agradecer a todos, em nome da Aquarela Inovação Tecnológica do Brasil, pela visita a este espaço e também por estarem acompanhando nossa caminhada empreendedora e pioneira no Brasil.
Nosso objetivo como empresários, cientistas da informação e cidadãos, é trazer conteúdo de fácil entendimento, esclarecendo uma série de dúvidas com relação ao que oferecemos em nossos produtos e serviços. Acreditamos também, que nossas experiências podem contribuir significativamente com a comunidade no Brasil e no exterior, razão pela qual o material será igualmente disponibilizado em inglês.
Os principais temas abordados:
Governança
Soluções de negócio, gestão da informação, governança corporativa, metodologias de trabalho criativo. Também serão abordados outros subtemas de valor para quem busca melhorar o seu negócio ou aprimorar seu conhecimento em gestão inovadora.
Tecnologia
Materializando as teorias abordadas em governança e na indústria apresentamos um conjunto de tecnologias e técnicas que vão desde a infraestrutura da informação até linguagens de programação funcional, passando por aprendizado de máquina e visualização de dados. Neste universo, apresentaremos soluções que encontramos para determinados problemas, tutoriais sobre tecnologias da Web 3.0, inteligência artificial e outras inovações.
Finalizando, o conhecimento criado e desenvolvido aqui neste espaço será sempre classificado por tags e categorias, fiquem à vontade para desfrutar do conteúdo, interagir pelos comentários e outros canais.
Obrigado por sua companhia nessa jornada rumo à uma nova internet!
Fundador e Diretor Comercial da Aquarela, Mestre em Business Information Technology com especialização em logística – Universiteit Twente – Holanda. Escritor e palestrante na área de Ciência e Governança de Dados para indústria e serviços 4.0.
Fundador da Aquarela, CEO e arquiteto da plataforma VORTX. Mestre em Engenharia e Gestão do Conhecimento, entusiasta de novas tecnologias, tendo expertise em linguagem funcional Scala e em algoritmos de Machine Learning e IA.