AI provider? How to choose the best AI and Data Analytics provider?

AI provider? How to choose the best AI and Data Analytics provider?

Choosing a artificial intelligence provider for analytics projects, dynamic pricing, demand forecasting is, without a doubt, a process that should be on the table of every manager in the industry. Therefore, in case you are considering to speed up the process, an exit and the hiring of companies specialized in the subject.

A successful implementation of analytics is, to a large extent, a result of a well-balanced partnership between the internal teams and the teams a analytics service provider, so this is an important decision. Herein, we will cover some of key concerns.

Assessing the AI provider based on competencies and scale

First, you must evaluate your options based on the skills of the analytics provider. Below we bring some for criteria:

  • Consistent working method in line with your organization’s needs and size.
  • Individual skills of team members and way of working.
  • Experience within your industry, as opposed to the standard market offerings.
  • Experience in the segment of your business.
  • Commercial maturity of solutions such as the analytics platform.
  • Market reference and ability to scale teams.
  • Ability to integrate external data to generate insights you can’t have internally.

Whether developing an internal analytics team or hiring externally, the fact is that you will probably spend a lot of money and time with your analytics and artificial intelligence provider(partner), so it is important that they bring the right skills to your department’s business or process.

Consider all the options in the analytics offering.

We have seen many organizations limit their options to Capgemini, EY, Deloitte, Accenture and other major consultancies or simply developing internal analytics teams. Although:

But there are many other good options on the market, including the Brazilian ones which are worth paying attention to the their rapid growth. Mainly within the main technological centers of the country, such as: in Florianópolis or Campinas.

Adjust expectations and avoid analytical frustrations

We have seen, on several occasions, the frustrated creation of fully internal analytics teams, be they for configuring data-lakes, data governance, machine learning or systems integration.

The scenario for the adoption of AI is similar, at least per hour, to the time when companies developed their own internal ERPs in data processing departments. Today of the 4000 largest technology accounts in Brazil, only 4.2% maintain the development of internal ERP, of which the predominant are banks and governments, which makes total sense from the point of view of strategy and core business.

We investigated these cases a little more and noticed that there are at least four factors behind the results:

  • Non-data-driven culture and vertical segmentation prevent the necessary flow (speed and quantity) of ideas and data that make analytics valuable.
  • Projects waterfall management style performed in the same manner as if the teams where creating a physical artifacts or ERP systems, this style is not suitable for analytics.
  • Difficulty in hiring professionals with knowledge of analytics in the company’s business area together with the lack of on-boarding programs suited to the challenges.
  • Technical and unforeseen challenges happen very often, so it is necessary to have resilient professionals used to these cognitive capoeira (as we call here). Real life datasets are never ready and are as calibrated as those of the examples of machine learning of the passengers of the titanic dataset. They usually have outliers (What are outliers?), They are tied to complex business processes and full of rules as in the example of the dynamic pricing of London subway tickets (Article in Portuguese).

While there is no single answer to how to deploy robust analytics and governance and artificial intelligence processes, remember that you are responsible for the relationship with these teams, and for the relationship between the production and analytics systems.

Understand the strengths of analytics provider, but also recognize their weaknesses

It is difficult to find resources with depth and functional and technical qualities in the market, especially if the profile of your business is industrial, involving knowledge of rare processes, for instance, the physical chemical process for creating brake pads or other specific materials.

But, like any organization, these analytics provider can also have weaknesses, such as:

  • Lack of international readiness in the implementation of analytics (methodology, platform), to ensure that you have a solution implemented fast.
  • Lack of migration strategy, data mapping and ontologies
  • No guarantee of transfer of knowledge and documentation.
  • Lack of practical experience in the industry.
  • Difficulty absorbing the client’s business context

Therefore, knowing the provider’s methods and processes well is essential.
The pillars of a good Analytics and AI project are the Methodology and its Technological Stack (What is a technological stack?). Therefore, seek to understand about the background of the new provider, ask about their experiences with other customers of similar size to yours.

Also, try to understand how this provider solved complex challenges in other businesses, even if these are not directly linked to your challenge.

Data Ethics

Ethics in the treatment of data is a must have, therefore we cannot fail to highlight this topic of compliance. It is not just now that data is becoming the center of management’s attention, however new laws are being created as example of GDPR in Europe and LGPD in Brazil.

Be aware to see how your data will be treated, transferred and saved by the provider, and if his/her name is cleared on google searches of even public organizations.

Good providers are those who, in addition to knowing the technology well, have guidelines for dealing with the information of your business, such as:

  • It has very clear and defined security processes
  • Use end-to-end encryption
  • Track your software updates
  • Respect NDAs (Non-disclosure Agreements) – NDAs should not be simply standard when it comes to data.
  • All communication channels are aligned and segmented by security levels.
  • They are well regarded by the data analysis community.

Conclusions and recommendations

Choosing your Analytics provider is one of the biggest decisions you will make for your organization’s digital transformation.

Regardless of which provider you choose for your company, it is important that you assemble an external analytics consulting team that makes sense for your organization, that has a technological successful and proven business track that supports your industry’s demand.

What is Aquarela Advanced Analytics?

Aquarela Analytics is Brazilian pioneering company and reference in the application of Artificial Intelligence in industry and large companies. With the Vortx platform and DCIM methodology, it serves important global customers such as Embraer (aerospace), Randon Group (automotive), Solar Br Coca-Cola (food), Hospital das Clínicas (health), NTS- Brazil (oil and gas), Votorantim (energy), among others.

Stay tuned following Aquarela’s Linkedin!

Author

14 sectors for applying Big Data and their input datasets

14 sectors for applying Big Data and their input datasets

Hello folks, 

In the vast majority of talks with clients and prospects about Big Data, we soon realized an astonishing gap between the business itself and the expectations of Data Analytics projects. Therefore, we carried out a research to respond the following questions: 

  • What are the main business sectors that already use Big Data?
  • What are the most common Big Data results per sector?
  • What is the minimum dataset to reach the results per sector

The summary is organized in the table below.

,Business type / sector,Raw data examples,Business Opportunities,, ,"1 - Bank, Credit and Insurance ","Transaction history. Registration forms. External references such as the Credit Protection Service. Micro and macro economic indices. Geographic and demographic data.","Credit approval. Interest rates changes. Market analysis. Prediction of default . Fraud detection. Identifying new niches. Credit risk analysis.",, ,2 - Security,"Access history. Registration form. Texts of news and WEB content.",Pattern detection of physical or digital behaviours that offer any type of risk.,, ,3 - Health,"Medical records. Geographic and demographic data. Sequencing genomes.","Predictive diagnosis (forecast). Analysis of genetic data. Detection of diseases and treatments. Map of health based on historical data. Adverse effects of medications / treatments.",, ,"4 - Oil, gas and electricity",Distributed sensor data.,"Optimization of production resources. Prediction / fault and found detection.",, ,5 - Retail,"Transaction history. Registration form. Purchase path in physical and/or virtual stores. Geographic and demographic data. Advertising data. Customer complaints.","Increasing sales by product mix optimization based on behaviour patterns during purchase. Billing analysis (as-is, trends), the high volume of customers and transactions, credit profile by regions. Increasing satisfaction / loyalty.",, ,6 - Production,"Data management system / ERP production. Market Data.","Optimization of production over sales. Decreased time / amount of storage. Quality control.",, ,7 - Representative organizations,"Customer's registration form. Event data. Business process management and CRM systems.","Suggestion of optimal combinations of company profiles, customers, business leverage to suppliers. Synergy opportunities identification.",, ,8 - Marketing,"Micro and macroeconomic indices. Market research. Geographic and demographic data. Content generated by users. Data from competitors. ","Market segmentation. Optimizing the allocation of advertising resources. Finding niche markets. Performance brand / product. Identifying trends.",, ,9 - Education,"Transcripts and frequencies. Geographic and demographic data. ","Personalization of education. Predictive analytics for school evasion.",, ,10 - Financial / Economic,"List of assets and their values. Transaction history. Micro and macroeconomics indexes.","Identify the optimal value of buying complex assets with many analysis variables (vehicles, real estate, stocks, etc.). Determining trends in asset values. Discovery of opportunities.",, ,11 - Logistic,"Data products. Routes and delivery points.","Optimization of goods flows. Inventory optimization.",, ,12 - E-commerce,"Customer registration. Transaction history. Users' generated content.","Increased sales through automatic product recommendations. Increased satisfaction / loyalty.",, ,"13 - Games, social networks and platforms (freemium)","Access history. Registration of users. Geographic and demographic data.",Increase free users conversion rate for paying users by detecting the behaviour and preferences of users. ,, ,14 - Recruitment,"Registration of prospects employees. Professional history, CV. Conections on social networks.","The person's profile evaluation for a specific job role. Criteria for hiring, promotions and dismissal. Better allocation of human resources.",,

Conclusions

  • The table presents a summary for easy understanding of the subject. However, for each business there are many more variables, opportunities and of course, risks. It is highly recommended to use multivariate analysis algorithms to help you prioritize the data and reduce project’s cost and complexity.
  • There are many more sectors in which excellent results have been derived from Big Data and data science methodology initiatives. However we believe that these can serve as examples for the many other types of similar businesses willing to use Big Data.
  • Common to all sectors, Big Data projects need to have relevant and clear input data; therefore it is important to have a good understanding of these datasets and the business model itself. We’ve noticed that currently many businesses haven’t been yet collecting the right data in their systems, which suggests the need pre-Big Data projects. (We will write about this soon). 
  • One obstacle for Big Data projects is the great effort to collect, organize, and clean the input data. This can surely cause overall frustration on stakeholders.
  • At least as far as we are concerned, plug & play Big Data solutions that automatically get the data and bring the analysis immediately still don’t exist. In 100% of the cases, all team members (technical and business) need to cooperate, creating hypothesis, selecting data samples, calibrating parameters, validating results and then drawing conclusions. In this way, an advanced scientific based methodology must be used to take into account business as well as technical aspects of the problem.

What is Aquarela Advanced Analytics?

Aquarela Analytics is Brazilian pioneering company and reference in the application of Artificial Intelligence in industry and large companies. With the Vortx platform and DCIM methodology, it serves important global customers such as Embraer (aerospace), Randon Group (automotive), Solar Br Coca-Cola (food), Hospital das Clínicas (health), NTS- Brazil (oil and gas), Votorantim (energy), among others.

Stay tuned following Aquarela’s Linkedin!

Send this to a friend