A área de da ciência de dados está ligada a um processo intenso de comunicação, como já escrevemos neste post, sobre o perfil do cientista de dados na visão da Aquarela. Portanto, saber comunicar informações importantes (e, em muitos casos, bastante abstratas) de modo direto e atrativo é uma das habilidades que os melhores cientistas de dados exercitam diariamente. O objetivo deste artigo é mostrar que; a forma como você apresenta uma tabela Excel, por mais simples que seja, pode impactar diretamente o seu público (seja ele seu chefe, cliente, equipe, etc). Portanto, visualização de dados é muito mais do que apenas a visualização de gráficos.

Menos é Muito Mais

Por muito tempo, o senso estético e a análise de dados caminharam afastados. Porém, com a democratização do acesso à informação e o crescente interesse do mercado por analytics, o “sex appeal” da visualização de dados foi colocado em cheque por diversas vertentes de trabalho, como por exemplo o jornalismo de dados.

Neste caminho, hoje temos uma realidade onde os dados legíveis são mais importantes do que apenas dados. Ler informação nem sempre significa entendimento, porque a compreensão do leitor sempre depende da forma de comunicação utilizada.

Aqui é importante salientar que:

“Visualização de dados não é apenas a geração de gráficos e painéis (dashboards), é algo que abrange também todas as interfaces visíveis dos dados aos diversos tipos de usuários. Alguns visualizam dados em modo texto, por exemplo, e são muito eficientes.” – Joni Hoppen, 2017

Visualmente falando, em muitos casos, menos significa mais. Comunicação significa tornar algum conhecimento comum.

Demonstração no Excel: Dados ou informação?

Nas figuras a seguir apresentamos duas imagens da mesma tabela (conjunto de dados) para demonstrar o contraste entre o design das duas. A primeira é um tipo bastante comum de planilha do Excel, criada sem uma estratégia coerente, e a segunda é resultado da aplicação das 13 dicas que citamos aqui.

tipo genérico de tabela que não foi feita com conceitos de design de dados em mente.

Resultado da aplicação de conceitos de design de dados sobre a tabela

 

Fica uma pergunta ao leitor: Qual das imagens apresenta mais dados e qual apresenta mais informação?

Níveis de informação e maturidade

Uma empresa com alto nível de maturidade em data analytics apresenta visualizações de dados em diferentes níveis de granularidade de acordo com cada perfil, garantindo que decisões aconteçam no tempo certo pelas pessoas certas dentro de um fluxo coerente de trabalho.

“Uma informação bem comunicada reduz a ansiedade” – Richard Saul Wurman, 1989

Para ajudar nesse processo de melhorar a qualidade de análise de dados, disponibilizamos alguns materiais de apoio, como nosso E-book sobre introdução a cultura de data analytics, aonde mostramos como você pode quebrar as barreiras no processo de adoção de uma cultura de dados. Baixe agora e descubra como fazer parte da revolução do analytics!

Alguns exemplos:

  • Técnicos de operação: Os técnicos que estão atendendo fisicamente os clientes nos diversos bairros da cidade precisam apenas das informações do agendamento e que estas caibam na tela do celular.
  • Especialistas de Infraestrutura: Os analistas de bancos de dados precisam de acesso em modo texto aos bancos de dados e a forma como são concatenados às tabelas em texto é muito importante para entender a estrutura das tabelas de forma não sumarizada (dados brutos).
  • Gestor: Os gestores necessitam de relatórios de alto nível e já sumarizados (the Big Picture) com as informações mais relevantes e que possam ser consumidas no menor tempo.

Mais informações sobre níveis de informação neste artigo: Dos Dados à Inovação

Como fazer na prática?

Legal, quero melhorar minha comunicação de dados, mas tenho tenho zero conhecimento de design. Não sei a diferença de CMKY e RGB, muito menos usar o photoshop, como posso melhorar a minha visualização de dados?

Calma! Agora vem a parte legal!

Inspirado no autor Joey Cherdarchuk, fizemos uma versão brasileira (Herbert Richers) com algumas melhorias, baseadas em nossa experiência como instrutores de Data Analytics na Aquarela, para que você possa utilizar rapidamente estas dicas e apresentar os resultados de suas análises de forma muito mais profissional e impactante. Basta seguir alguns destes 13 passos a seguir:

Notem que o fundamental aqui é a utilização dos conceitos de design aplicado a uma tabela, e não necessariamente das funcionalidades da ferramenta, pois ferramentas como o Excel, o Google Sheet ou o LibreOffice sem uma estratégia são apenas ferramentas.

Nesta linha o autor Joey Cherdarchuk vai mais além dizendo que os dados são melhores apresentados quando ficam pelados:

“Data looks better naked” – Joey Cherdarchuk, 2013

Para te ajudar a entender melhor como essa “mágica” visual aconteceu, disponibilizamos para download a tabela do exemplo, assim você possa replicar as ideias em suas próximas interações com o excel, clique na imagem a baixo e faça o download!

Gostou?

Para mais informações, recomendamos um estudo da teoria Gestalt, que traz a ideia de incorporação dos espaços vazios como elementos do desenho, uma teoria tão interessante (ponto de vista do Joni) que pode ser aplicada no planejamento pessoal, organização da casa, processos de urbanização e etc.

Recomendamos também o livro Information Anxiety, do autor Richard Saul Wurman, um dos criados dos famosos TED talks. Nesse livro ele transmite um apanhado geral do que fazer quando a informação não te diz o que você precisa saber.

Outros temas analíticos que vão ao encontro da visualização de dados são:

  • Design de Indicadores;
  • Design de Informação;
  • Visualização de dados;
  • Técnicas de apresentação.

Esperamos que essas informações sejam úteis no seu dia a dia e que possam de fato gerar mudanças na sua estratégia de trabalho com dados e que isso gere de decisões de melhor qualidade, pois vivemos num país que precisa urgente de melhores decisões em todos os níveis.

Continuem atentos às novas publicações, fiquem à vontade para comentar abaixo e não esqueçam de compartilhar essas informações com seus amigos pois:

“A cultura de Data Analytics só cresce quando compartilhada.” – Joni Hoppen, 2017

 

Autores
Joni Hoppen
Fundador da Aquarela, professor e palestrante na área de Ciência de Dados, mestre em Sistemas de Informação, focado em processos de rápida prototipação de Big Data Analytics e cultura de dados.

Eduardo Pacheco
Analista de Marketing e comunicação, Bacharel em Design, responsável pela comunicação e posicionamento da Aquarela, criador da marca e dos conceitos que sustentam a Brasilidade tecnológica da empresa.

Informações para referenciação: Gostou do material? Caso queira enriquecer sua pesquisa ou relatório (seja blog post ou artigo acadêmico), referencie nosso conteúdo como: Aquarela 2018 - Inteligência Artificial para negócios (www.aquare.la).